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Bridging Compartmental Models and Network Analysis in  
Epidemiological Modelling

Abstract

In this study, the authors undertake a comparative analy-
sis of compartmental models and network analysis as means 
of simulating the propagation of infectious diseases. Com-
partmental models operate under the assumption of ho-
mogeneous mixing, which is often a flawed assumption as 
individuals tend to engage in varied contact patterns based 
on their surrounding environments. On the other hand, so-
cial network analysis accounts for the intricate web of inter-
personal connections between individuals, thereby offering 
a more realistic portrayal of social behaviour. However, net-
work analysis can be computationally demanding, rendering 
its application in real-time epidemic modelling challenging. 
By conducting a series of simulations utilising the SIR model 
and network analysis, the authors accentuate the merits of 
a hybrid modelling approach that integrates the strengths of 
both compartmental models and network analysis while mit-
igating their respective limitations. Additionally, the authors 
suggest plausible avenues for future research.
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Background

Epidemiological modelling has played a crucial role in com-
prehending and managing the transmission of infectious dis-
eases (Fitzpatrick et al. (2019), Gopal et al. (2021)). One of the 
primary strategies for tracking the course of an epidemic is com-
partmental modelling, which has been enhanced (e.g. Hethcote 
(2000), Abou-Ismail (2020), Mendes & Coelho (2021)) since the 
pioneering work of Kermac and McKendrick in 1927 (Kermack & 
McKendrick (1927), Kermack & McKendrick (1932), Kermack & 
McKendrick (1933)). Another approach is network analysis (Kiss 
et al. (2017)), which has been used to highlight specific disease 
spread mechanisms (e.g. Eames & Keeling (2002)). Both meth-
ods provide unique perspectives and limitations for simulating 
disease spread, and this study explores these methodologies in 
brief, highlighting their differences, limitations, and potential 
integrations for more accurate and computationally efficient 
simulations.

Compartmental models, such as the SIR model, are widely 
used to study the spread of infectious diseases. These models 
divide populations into distinct compartments, such as suscep-

tible, infectious, and removed/recovered individuals, and rely 
on differential equations to capture the movement of individu-
als between these compartments. However, recent research 
has been using stochastic approaches (e.g. Ward et al. (2022) 
and Mendes & Coelho (2023)) for modelling the spread of dis-
eases in real-world settings. The main assumption of compart-
mental models is homogeneous mixing, which assumes that 
individuals have equal contact probabilities with one another, 
regardless of their location or social context. This assumption is 
often unrealistic, as individuals have different contact patterns 
according to the environments they move around. For example, 
individuals in larger areas are less likely to interact with those 
who are far away (Anderson & May (1992)). In contrast, social 
network analysis takes into account the complexity of interper-
sonal connections between individuals (Figure 1). Each node in 
a social network can be in different states, and transition prob-
abilities are influenced by the number and nature of contacts 
with infectious individuals. The homogeneous network model 
assumes equal connections for each node, while the hetero-
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Figure 1: The figure depicts three different types of networks, each 
with distinct characteristics. Panel (a) shows a complete and ho-
mogeneous network with ten nodes that are all connected to each 
other, with each node having a degree of nine. Panel (b) illustrates 
an incomplete and heterogeneous network with ten nodes, where 
each node has a varying number of connections, ranging from two 
to five. Panel (c) depicts a heterogeneous clustered network with 
two clusters, one representing the Rurals cluster, and the other 
representing the Urbans cluster. In the context of a spreading dis-
ease, the degree of clustering can significantly impact the spread 
of the disease. With a highly clustered network, as the number of 
infected individuals in one cluster increases, the likelihood of in-
fecting another individual is high due to the dense network of con-
tacts. However, as fewer contacts remain susceptible, the likelihood 
decreases, which slows down the spread of the disease. In epide-
miological research, highly connected individuals, known as super-
spreaders, can play a crucial role in the early stages of a disease, 
helping it spread rapidly based on their high degree of interaction 
with others.

geneous model offers a more realistic representation of social 
behaviour. However, network analysis can be computationally 
intensive, making it challenging to apply in real-time epidemic 
modelling. Furthermore, individuals with more connections 
(super-spreaders) have a higher probability of transmitting the 
disease (Lloyd-Smith et al. (2005)).

Simulation scenarios and computational modelling

To illustrate our arguments, we propose a series of simula-
tions using the SIR model and network analysis, using a stochas-
tic approach. Assume that the time (in days) that an individual 
spends in a compartment is exponentially distributed (other 
more suitable distributions, such as Weibull, may be used) with 
some compartment-specific rate λ(t). The probability of extend-
ing the stay by a further period of length h (hereafter we consider 
h = 1 day) is exp(−λ(t)h), and the probability of leaving is there-
fore p = 1 − exp(−λ(t)h). Whether an individual moves or stays is 
a Bernoulli distributed variable with probability p, and a binomi-
al distribution results from the summation over the individual 
Bernoulli trials assuming that they are independent and identi-
cal for all compartment members (Mode & Sleeman (2000)).

Consider a time discrete version of the SIR model given by 
the following equations:

S(t) = S(t − 1) − dI,

I(t) = I(t − 1) + dI − dR,

R(t) = R(t − 1) + dR,

dI ∼ Bin(S(t − 1),pdI), t = 1,...,T,

dR ∼ Bin(I(t − 1),pdR), t = 1,...,T,

N = S(t) + I(t) + R(t),

S(0) = N − i0, I(0) = i0, R(0) = 0, pdI = 1 − exp(−βI(t − 1))), t = 
1,...,T, pdR = 1 − exp(−γI(t − 1))), t = 1,...,T.

We used a population size of N=1,000 to compare the SIR 
baseline model with network models, which was sufficient 
to convey our points and simultaneaously computationally 
feasible. The epidemic began with 10 infectious individuals, 
β=0.0003, γ=1/10 (10-day infectious period), and t=0,110. To 
account for uncertainty, we ran the process 1,000 times, gen-
erating 1,000 replicates. The evolution of compartment I(t) is 
shown in Figure 1 (Baseline SIR), with the blue line represent-
ing the mean of the replicates and the light-blue shaded area 
indicating the 95% credible interval. We then transformed the 
SIR model into a network with 1,000 nodes and 50 connections 
each, ensuring homogeneity and reflecting the comprehensive 
nature of the network of potential links in the SIR model. The 
infection dynamics with 1,000 nodes and 50 links were identical 
to those in the SIR model without a network structure (SIR Net-
work) after calibration of β to obtain a similar prevalence curve. 
The red line in Figure 1 approaches the blue line due to the 
small population size, falling within the 95% credible interval.

The second scenario (shown in Figures 2 and 3) as network 
model I and II assumes there are two clusters. One, the Urbans, 
has 800 nodes highly connected (85 connection each), and the 
second, the Rurals, has 200 nodes with 8 connections each, 
keeping the same average number of nodes, that is 50. Some 
of the Rurals are connected to nodes in the Urban cluster. We 
tried two distinct scenarios only differing on the location of the 
initial infections. Then we assume that the infection starts with 
five infectious Rurals and five infectious Urbans (Network mod-
el II). They are not very different. Indeed, the epidemic spreads 
at a slightly slower rate in this scenario compared to the previ-
ous one, which is expected due to the fewer number of con-
nections among the Rurals. However, the rapid spread among 
the Urbans more than compensates for this, leading to a faster 
spread overall and a similar spike of the outbreak, although it 
ends earlier than the SIR network. In the long term, the infected 
population does not reach the levels of the first scenario due 
to the slower evolution of the outbreaks caused by the limited 
connections among the Rurals and the fast reduction of num-
ber of susceptible nodes in the Urbans cluster.

Figure 2: Results of the simulation. Representation of the course of 
the incidence curve (daily number of infected individuals, I(t)) for 
an epidemic in a population of N=1,000 individuals. Results were 
obtained using a stochastic version of a SIR model and a 1000-node 
network with different numbers of nodes, in which the transitions 
between states (susceptible, infectious, and removed/recovered) 
were considered stochastic, as described in the text.
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Integrating the two approaches: Frequently, when we have 
two infeasible extremes, the ideal solution lies in between. 
Here, using a hybrid approach to combine the strengths of both 
compartmental models and network analysis and mitigate their 
limitations can be achieved by:

1. Downscaling compartmental models to smaller geo-
graphical areas, for multi-compartment models, with 
homogeneous mixing within but heterogeneous mixing 
among them. Spatial neighbourhood and similarity ma-
trices (e.g. Besag et al. (1991), MacNab (2022), MacNab 
(2023), Baptista et al. (2016), Baptista et al. (2020)), as 
used in disease mapping, can be incorporated to capture 
the regional dynamics of disease spread, considering fac-
tors such as population density and mobility patterns 
(mobile-generated data may be used in establishing dy-
namic mobility patterns).

2. Incorporating stochastic, time-varying heterogeneous 
contact matrices (Mendes & Coelho (2023)) based on 
localisation, age, and sex may help on assess the impact 
of public health measures (e.g. gathering bans, travel re-
strictions, lockdowns, etc.) across different demographics 
and geographical areas.

3. Incorporating the impact of various pathogenic variants 
on the infection mechanism model. Additionally, the in-
fection mechanism should account for spatial variation 
in infection probability through spatial processes, such as 
spatial random fields or Markov random fields (e.g. Baner-
jee et al. (2015), MacNab (2023), Baptista et al. (2016)).

4. Incorporating, the impact and effectiveness of public 
health measures targeting either the reduction of prob-
ability of being infected, given a contact with an infec-
tious individual (e.g. facial coverings) or the reduction 
of contacts among individuals (e.g. gathering bans) (e.g. 
Mendes & Coelho (2023)).

5. Incorporating additional compartments (e.g. Mendes & 
Coelho (2023)) to account for differential recovery rates, 
disease severity, and the consequent effects on health-
care resource utilisation, including hospitalisation and 
fatality rates.

Conclusion and future directions

As we illustrated herein, simulations can provide valuable in-
sights into the dynamics of disease spread under different sce-

Figure 3: Results of the simulation. Representation of the total 
number of infections (accumulated daily number of infected indi-
viduals), the Baseline SIR, and the two network models described in 
the text, whose incidence curve is shown in Figure 2.

narios. These simulations will not only reinforce the theoretical 
aspects discussed but also offer practical examples of how epi-
demiological models can be adapted and applied to real-world 
scenario to gain a deeper understanding of the disease dynamics.

The fusion of compartmental models and social network 
analysis, as well as incorporation of spatial neighbourhoodand/
or similarity-matrices commonly seen in disease mapping, of-
fers a promising pathway for more accurate and efficient epide-
miological modelling. This integrative approach accommodates, 
as much as possible, the complexity of real-world social interac-
tions and geographical variations as described, enhancing our 
ability to predict and manage infectious disease outbreaks.

Our future research shall focus on refining these hybrid mod-
els, exploring the impact of various social behaviours and public 
health interventions. Additionally, leveraging advancements in 
computational power and algorithmic efficiency will be crucial 
in realising the full potential of these sophisticated epidemio-
logical models.
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